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Bound states at semiconductor–Mott insulator interfaces
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Utilizing the hierarchy of correlations in the context of a Fermi-Hubbard model, we deduce the presence of
quasiparticle bound states at the interface between a Mott insulator and a semiconductor, as well as within
a semiconductor–Mott–semiconductor heterostructure forming a quantum well. In the case of the solitary
interface, the existence of bound states necessitates the presence of an additional perturbation with a minimal
strength depending on the spin background of the Mott insulator. Conversely, within the quantum well, this
additional perturbation is still required to have bound states while standing-wave solutions even exist in its
absence.
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I. INTRODUCTION

The continuous advancements in thin film growth tech-
niques of oxides [1,2] have sparked a surge of interest
in heterointerfaces between transition metal oxides [3–6].
Electrons within these complex oxides experience a strong
on-site Coulomb repulsion [7], giving rise to intricate elec-
tronic correlations while simpler oxides are band insulators or
semiconductors. Interestingly, conducting interfaces between
band-insulating oxide perovskites are well studied and under-
stood, for example, at the LaAlO3/SrTiO3 interface [8,9].

The origin of the conducting layer is closely related to
the avoidance of the so-called “polar catastrophe,” a mecha-
nism broadly applicable to (001) interfaces [10–14]. The polar
heterojunction leads to charge transfer and subsequently to
the formation and filling of a conduction band by the Ti 3d
electrons [15]. Notably also the interface between the band
insulator KTaO3 and Mott insulator LaTiO3 shows a conduct-
ing layer [16,17]. In the case of the (110) interface this cannot
be traced back to the “polar catastrophe” and instead the Mott
insulating physics becomes relevant [16].

Describing the strongly correlated nature of such Mott
insulators necessitates specialized techniques such as strong-
coupling perturbation theory [18,19], dynamical mean-field
theory [20], or methods like DFT + U [21], while semicon-
ductors, on the other hand, can be accurately described by
established band-structure methods, e.g., many-body pertur-
bation theory.

The integration of these unlike materials into heterostruc-
tures holds the promise of unlocking novel applications [6,22–
25]. Because of this, it is crucial to have a comprehen-
sive understanding of the electronic states at their interfaces.
While previous works have delved into the band lineup of
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heterointerfaces involving different Mott insulators and band
insulators [26,27] or calculated charge localization at spe-
cific Mott insulator interfaces like LaAlO3/SrTiO3 [28],
LaTiO3/KTaO3 [15,29], or LaTiO3/SrTiO3 [30–32], this
study follows a general approach to deduce the existence of
bound states in such types of systems, independent of specific
band lineups and materials.

In navigating the complexities of these distinct material
classes, we employ the hierarchy of correlations [33,34], a
framework that aligns both weakly and strongly interacting
materials on equal footing while preserving spatial resolution
[35]. This approach allows us to bridge the gap between
the different description requirements of semiconductors and
Mott insulators, offering a unified perspective on their be-
havior within heterostructures. We derive a Schrödinger-like
equation for the quasiparticle wave functions beyond the
mean-field approximation. Within this approach, we will ex-
amine the different spin backgrounds of Mott insulators, the
unpolarized background, and the Mott-Néel state and their
influence on charge bound states.

At first, we introduce the Hubbard Hamiltonian used to
model both the Mott insulator and the semiconductor as
well as the hierarchy of correlations. After this we calculate
bound states at a single interface with an interface perturba-
tion and give the minimal strength needed to support bound
states for the different spin backgrounds. We continue with
a heterostructure of an unpolarized Mott insulator stacked
between two semiconductors with and without an interface
perturbation.

II. HUBBARD MODEL AND HIERARCHY
OF CORRELATIONS

To characterize bound states at the interfaces of systems
exhibiting varying degrees of correlation strength, we employ
the Hubbard model [36], defined as follows:

Ĥ = − 1

Z

∑
μνs

Tμνc†
μscνs +

∑
μ

Uμn̂μ↑n̂μ↓ +
∑
μs

Vμn̂μs. (1)
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Here, c†
μs and cνs are the fermionic creation and annihilation

operators, respectively, at sites μ and ν. The corresponding
number operators are denoted by n̂μs, where the spin index s
takes the values ↑ and ↓. The adjacency matrix Tμν encodes
both the lattice structure and hopping strength, in this work
taking the form T for nearest neighbors and zero otherwise.
The coordination number Z counts the nearest neighbors.

The parameter Uμ describes the on-site Coulomb interac-
tion in the Fermi-Hubbard model and it is nonzero only in the
Mott insulator. In the following it sets the energy scale. Note
that a possibly small U in a weakly correlated semiconductor
could be treated by a mean-field approximation and hence
simply be absorbed in the magnitude of an effective Vμ. This
is similar to Fermi liquid theory [37,38].

In principle, both the Mott insulator and the weakly cor-
related layer have an on-site potential Vμ, as the Hubbard
bands do not necessarily need to be centered around U/2.
But, as only the relative band alignment is crucial, we can
set Vμ∈ Mott ≡ 0 and describe the band alignment simply by
the offset Vμ∈ semi − Vμ∈ Mott ≡ V . This incorporates both the
material specific parameters of the band alignment and ex-
ternal electric fields into a single value for the band offset.
For example, in the LaTiO3/SrTiO3 interface the specific band
alignment depends on the number of grown layers. This would
also be dealt with by the offset V .

Therefore, the parameters Uμ and Vμ serve to differenti-
ate between strongly correlated systems (U �= 0, V = 0) and
weakly correlated systems (U = 0, V �= 0), as the on-site
repulsion Uμ and on-site potential Vμ play crucial roles in
characterizing the nature of electronic correlations and the
relative band alignments within the system.

A. Hierarchy of correlations

To approximate solutions for charge modes at the interface,
we employ the hierarchy of correlations [33,34,39] tailored
for systems with a large coordination number Z � 1. The
reduced density matrices of two or more lattice sites are
decomposed into correlated and on-site components. Specifi-
cally, for two lattice sites μ and ν, the decomposition reads
ρ̂μν = ρ̂μρ̂ν + ρ̂corr

μν . Based on the large coordination num-
ber assumption Z � 1, we may employ an expansion into
powers of 1/Z , where we find that higher-order correlators
are successively suppressed. The two-point correlator scales
as ρ̂corr

μν = O(Z−1), while the three-point correlation is sup-
pressed as ρ̂corr

μνλ = O(Z−2), and so on. This yields an iterative
scheme to solve for the full density operator ρ̂. More details
are presented in Appendix A.

Similar to the idea of Hubbard X [40,41] or composite
operators [42], we introduce quasiparticle operators as

ĉμsI = ĉμsn̂
I
μs̄ =

{
ĉμs(1 − n̂μs̄) for I = 0,

ĉμsn̂μs̄ for I = 1
(2)

for doublons I = 1 and holes I = 0. These quasiparticles are
the physical excitations within the Mott insulator on top of
its half-filled background and thus form a suitable starting
point for describing the physics. From these, we define the
correlation functions 〈ĉμsI ĉνsJ〉corr [35]. As we are interested
in charge bound states, i.e., electrons and doublons/holons, we

only take first order correlations into account. To this order,
these are the only nonzero correlation functions. This leaves
out the higher order correlations describing spin fluctuations,
particle number correlations, and doublon-holon correlations,
which would in second order act as source terms for the charge
mode dynamics. Therefore, we treat the charge modes on
top of a fixed mean-field background. This does not include
any backreaction effects of these modes onto the background.
Incorporating this would effectively yield a renormalized
hopping [39], altering the dispersion relation. The neglected
higher order correlations do not alter the dispersion and would
solely act as source terms. For Z � 1 this is a valid ap-
proximation. For the relevant part of the dynamics, this can
further be simplified by a factorization [39,43], which yields
the doublon p1

μ and holon p0
μ amplitudes as

〈ĉμsI ĉνsJ〉corr = (pI
μ

)∗
pJ

ν . (3)

In a sense, this is the same as writing the entries of the
many-body density operator ρ̂ in this doublon-holon basis as
ρ̂IJ = (pI )∗ pJ with the wave functions pI . The two ampli-
tudes can be grouped together using a spinor notation and
governing equations for these (quasi)particles [35] can be
derived. The interface in the systems breaks the translational
invariance into this one direction, but leaves the other ones
intact. Therefore, the parallel momentum k‖ is still a con-
served quantity. Hence we decompose the wave functions
pI

μ =∑k‖ pI
μ(k‖)eik‖·x‖

μ into their Fourier components. After
this, μ is a scalar index counting the layers parallel to the in-
terface and for simplicity of notation we do not explicitly write
down the momentum dependence. In a hypercubic lattice de-
pendent on the parallel momentum k‖ the Schrödinger-like
equations for the doublons I = 1 and holons I = 0 can be
combined using U I

μ = IUμ,(
E − U I

μ − Vμ

)
pI

μ + 〈n̂I
μ

〉0∑
J

T ‖
k pJ

μ

= −T
〈n̂I

μ〉0

Z

∑
J

(
pJ

μ−1 + pJ
μ+1

)
. (4)

In this equation, T ‖
k = 2T/Z

∑
i cos(k‖

i ) gives the kinetic en-
ergy contribution parallel to the interface. Because of the
periodicity in this direction bands form. The expectation val-
ues 〈n̂I

μ〉0 are to be taken in the mean-field background ρ̂0
μ

and encode the spin background structure. More details on
the derivation are presented in Appendix B. Essentially, the
hierarchy of correlations yields two coupled equations for the
wave functions of doublons p1

μ and holons p0
μ on top of a

half-filled background discretized on the lattice. These can be
solved for plane wave eigenmodes, evanescent solutions, and
boundary conditions, as known from the usual Schrödinger
equation in quantum mechanics. We might formally write the
system as

Hμ−1

[
p0

μ−1

p1
μ−1

]
+ Hμ+1

[
p0

μ+1

p1
μ+1

]
= Hμ

[
p0

μ

p1
μ

]
. (5)

This is the well-known form of a second-order differential
equation in space, such as the Schrödinger, Dirac, or Klein-
Gordon equation, for wave functions discretized on a lattice.
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B. Comparison to other methods

The hierarchy of correlations is based on a formal ex-
pansion into the inverse coordination number 1/Z , not on a
small parameter T/U or U/Z as in perturbation theory. This
allows us to treat weakly and strongly correlated materials
on the same level of theory. The dispersion relation within
the strongly correlated Mott insulator might be calculated
by means of other methods [36,44–47] like the Hubbard-
I approximation, Roth’s two-pole scheme, the second-order
decoupling approximation or composite operator methods.
Similar to the hierarchy of correlations, these methods rely
on truncating an infinite series of expectation values or cor-
relation functions. However, the hierarchy does have a small
parameter 1/Z , leading to a clear separation of leading and
subleading contributions [48,49] controlling this truncation,
while the other methods do not [see, e.g., Ref. [46], Eq. (56)],
making them inherently uncontrolled. Moreover, while the
former approaches are best suited to thermal states, our
framework naturally extends to dynamics (see [50] for the
thermal case within the hierarchy). The hierarchy leads to
nonperturbative results in T/U , as there are nonpolynomial
dependencies [39].

An alternative method that has been used to calculate trans-
port across Mott insulating layers [51] and interface charge
order [52,53] is dynamical mean-field theory (DMFT) [54].
The guiding idea behind DMFT is different from our ap-
proach: DMFT aims at approximating the self-energy of the
system in order to find the system’s Green’s function, while
the hierarchy aims at finding two- or multisite correlation
functions. The lifetime broadening related to self-energy is
only included in higher orders. While in our approach the
hopping scales as 1/Z , DMFT uses a 1/

√
Z scaling. As a

consequence, the Z → ∞ limit yields already a nontrivial and
physically interesting result in DMFT, while in the hierarchy
of correlations all correlations vanish in this limit. This sim-
plicity allows us to calculate the first-order 1/Z correlations on
top of the mean-field background and this includes the effects
of the lattice structure and dimensionality. The hierarchy of
correlations fully accounts for space-time dependence, partic-
ularly in higher dimensions [50,55], while DMFT [54] maps
to an effective single lattice site. This single-site mapping
leads to a purely local self-energy, neglecting all nonlocal cor-
relations. DMFT is formally exact only in the limit of infinite
dimensions and corrections beyond this limit are generally
uncontrolled. It is known to fail in low dimensions at low
temperatures. In contrast, our approach incorporates nonlocal
correlations and the validity of the hierarchy of correlations
is not dependent on the dimensionality of the system, but
only on the number of neighbors. Moreover, the resulting
equations are simple enough for analytic treatment, whereas
DMFT is primarily numerical [56,57].

The hierarchy of correlations is expected to fail for low
coordination numbers, as terms 1/Z2 cannot be neglected
compared to 1/Z anymore, but even in these cases the results
are still giving qualitative and quantitative agreement after in-
cluding second order backreaction effects and renormalizing
the hopping strength; see Ref. [55] for a comparison with
exact diagonalization. Another situation where the method
is expected to break down occurs when the two-point cor-
relations become comparable in magnitude to the on-site

expectation values. This typically happens near a phase
transition, for instance during a quench from the Mott insu-
lating to the superfluid phase in the Bose-Hubbard model. In
such a regime, one would need to describe the evolution of the
correlations on top of a newly determined mean-field back-
ground. Moreover, the hierarchy either works in the weakly
or strongly interacting regime, but cannot work in the inter-
mediate interacting strength relevant for, e.g., Kondo physics.
DMFT, on the other hand, is capable of doing both things [52].

To demonstrate the applicability, we assume a hypercubic
lattice mostly for simplicity, though some relevant materials
are cubic indeed. Many perovskite Mott insulators, such as
TiF3 [58] and LaTiO3 [29], exhibit insulating behavior on
three-dimensional cubic lattices with Z = 6. Others occur on
(quasi-)two-dimensional triangular lattices with the same co-
ordination number [59–61]. Since the hierarchy depends on
coordination number rather than dimensionality, our scaling
applies equally to both cases. Second-order effects can also be
included via a renormalized hopping parameter [39], ensuring
robustness across these systems. At present, such higher-order
calculations exist only for homogeneous systems [62] and
remain a subject for future work.

C. Parameter choice

Even though we describe the complex interactions in the
Mott insulator using a simplified Fermi-Hubbard model, there
are physically well-motivated choices for the parameters. A
common strategy is to use DFT calculations as a complemen-
tary tool to obtain the band structure of the material of interest,
then fit a tight-binding Hamiltonian to extract effective param-
eters. This approach generally yields a hopping-to-interaction
ratio in the range 0.05 < (T/Z )/U < 0.2 [51,52,63–65].

For instance, the DMFT study in Ref. [52] examined a
heterostructure with a finite number of Mott-insulating layers
embedded in an infinite band insulator. They used param-
eters T = 0.3 eV and U = 4.8 eV, values extracted from
experimental work on SrTiO3/LaTiO3 superlattices [1], cor-
responding to T/U = 0.0625. In Ref. [51], DMFT combined
with the Keldysh formalism was employed to study a Mott
insulator coupled to metallic leads, using T/U = 0.066 and
a band offset of V = U/2. Similarly, Ref. [53] investigated
a Mott-metal interface with a band offset of approximately
V ≈ 0.9U .

Experimentally, band offsets have been reported in a
range of systems: about V = 0.05U for Ni–NiO–Ni junc-
tions, V = 0.3U for Ni–MnO–Ni junctions [66], V ≈ 0.55U
for a LaVO3/SrTiO3 interface [67], and V ≈ 0.3U and V ≈
0.25U for the conduction band offsets in SrTiO3/SmTiO3 and
SrTiO3/GdTiO3, respectively [68].

In the following, we will use either T = 0.2U or T = 0.4U
as the hopping strength. This yields an effective strength of
T/Z = 0.05U to T/Z = 0.1U , right in the range of other
studies. We checked that varying the parameters within this
range leads to only quantitative, but not qualitative changes,
as the parameters remain within the (gapped) Mott-Hubbard
regime.

D. Unpolarized mean-field background

In the limit of strong correlation U � T , the mean-field
state within the strongly correlated Mott insulator ensures one
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particle per site, with additional virtual hopping processes
suppressed by T 2/U 2 [7,69]. This charge background has
different manifestations as there are different spin orderings
with the same charge configuration. At first, there is the unpo-
larized background:

ρ̂0
μ = 1

2 (|↑〉μ〈↑| + |↓〉μ〈↓|). (6)

This is realized by lattices with spin frustration or by a finite
temperature destroying any spin ordering but too low to excite
charges above the Mott gap U . On top of this half-filled lattice
the doublons (double occupations |↑↓〉) and holons (empty
sites |0〉) are the physically relevant excitations for which we
derived the Schrödinger-like equation.

On the other hand, in the weakly correlated semiconductor
region, where the quasiparticles are the real electrons, the on-
site density matrix takes different forms for the valence and
conduction bands: ρ̂0

μ = |↑↓〉μ〈↑↓| for the valence band and
ρ̂0

μ = |0〉μ〈0| for the conduction band.
Within each individual region, quasiparticles eigenmodes

can be described using the ansatz pI
μ = αI eiκμ + βI e−iκμ [35],

with the proportionality E p0
μ = (E − U )p1

μ in the Mott in-
sulator. In the semiconducting sites, either one or the other
is zero. These describe the plane wave eigenmodes of the
coupled doublons and holons in the Mott insulator and the
electrons in the semiconductor, respectively. The correspond-
ing wave numbers are given by

cos κsemi = Z

2T
[V − E − T ‖

k ],

cos κMott = Z

2T

[
E (U − E )

E − U/2
− T ‖

k

]
. (7)

These expressions provide a description of quasiparticle be-
havior within the semiconductor and Mott insulator regions,
offering valuable insights into their wavelike properties in
these correlated systems [35]. In the following, we introduce
the abbreviations:

r± = e±iκMott , s± = e±iκsemi (8)

to describe the Mott and semiconducting solutions,
respectively.

The quasiparticles (holons and doublons) show a wavelike
behavior inside the Mott bands and might be described by
plane waves, similar to the electrons in the semiconducting
band. The wave functions of these quasiparticles do not evolve
independent of each other, but they are coupled.

E. Bipartite mean-field background

Secondly, there is the antiferromagnetic Mott-Néel state
with its checkerboard structure:

ρ̂0
μ =

{
|↑〉〈↑| μ ∈ A,

|↓〉〈↓| μ ∈ B.
(9)

There are two different sublattices A and B with either spin-up
or spin-down electrons. Without loss of generality, we use
〈n̂μA↑〉 = 1, 〈n̂μB↑〉 = 0. In this spin configuration, the unit cell
has double the size compared to the unpolarized background.
This leads to backfolding in the Brillouin zone, giving two

solutions: an even and an odd one. Moreover, the bipartite
structure will imprint on the weakly interacting sites.

In order to capture the quasiparticles and their eigenmodes
on this bipartite lattice structure, we introduce another index
A or B for the respective sublattice. In the Mott-Néel state, the
coupled equations for doublons and holons thus read

E p0A
μ = −

[
T ‖

k p1B
μ + T

Z

(
p1B

μ+1 + p1B
μ−1

)]
,

(E − U )p1B
μ = −

[
T ‖

k p0A
μ + T

Z

(
p0A

μ+1 + p0A
μ−1

)]
. (10)

As in the unpolarized state, doublons and holons are not
independent of each other, but they are coupled. This leads to
a proportionality between the two quasiparticles p1B

μ = βp0A
μ

with β = ±
√

E
E−U . With the ansatz p1B

μ = Bκμ and p0A
μ =

Aκμ, A and B being the wave function amplitudes, we find
the eigenmodes

κ1,2 = − Z

2T
(
√

E (E − U ) + T ‖
k )

±
√[

Z

2T
(
√

E (E − U ) + T ‖
k )

]2

− 1,

κ3,4 = + Z

2T
(
√

E (E − U ) − T ‖
k )

±
√[

Z

2T
(
√

E (E − U ) − T ‖
k )

]2

− 1, (11)

with κ1κ2 = κ3κ4 = 1. Because of the backfolding there are
four eigenmodes. Within the Hubbard bands, these obey
|κi| = 1, such that we have plane waves again. This can be
seen from the identity x ± i

√
1 − x2 = e±i arccos(x), which de-

fines the wave numbers for the two different types of plane
wave eigenmodes κ1,2 and κ3,4. Within the Mott bands, they
read

cos(x1,2) = Z

2T
(
√

E (E − U ) + T ‖
k ),

cos(x3,4) = Z

2T
(
√

E (E − U ) − T ‖
k ). (12)

Outside the Mott bands, they define decaying solutions. The
proportionality between them reads

Bi = 1

U − E

[
T ‖

k + T

Z

(
κi + κ−1

i

)]
Ai, (13)

which again fixes β. κ1 and κ2 belong to “even” solutions, i.e.,
having the same sign on neighboring sites of both sublattices,
whereas κ3 and κ4 belong to “odd” solutions defined by a sign
change between sublattices.

Without loss of generality, we can extend the bipartite
structure to the semiconducting half-space, now setting p0A

μ =
±αp0B

μ in the conduction band case. The eigenmodes on the
two sublattices are not independent of each other. Together
with the ansatz λμ, we find the eigenmodes for α = +1 as

λ± = − Z

2T
(E − V + T ‖

k ) ±
√[

Z

2T
(E − V + T ‖

k )

]2

− 1.

(14)
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This is again an “even” solution. Similarly for α = −1, we
find with p0A

μ = ρμ

ρ± = + Z

2T
(E − V − T ‖

k ) ±
√[

Z

2T
(E − V − T ‖

k )

]2

− 1

(15)

belonging to the “odd” solution. Inside the semiconducting
band these are plane waves eik with wave numbers defined
as the solution of cos(k) = Z

2T (E − V + T ‖
k ) and cos(k) =

Z
2T (E − V − T ‖

k ), respectively.
As in the unpolarized case, the quasiparticles on the bipar-

tite lattice show a wavelike behavior within the bands. They
are coupled and the wave functions on the different sublattices
are proportional to each other with an energy dependent factor.
Moreover, there are two different solutions, even and odd
ones, with the same sign or a sign switch between the wave
functions on their respective sublattice.

III. UNPOLARIZED MOTT-SEMICONDUCTOR
INTERFACE

First, our objective is a single unpolarized Mott-
semiconductor interface. We consider a hypercubic lattice
where the two half spaces correspond to a Mott insulator with
site index μ < 0 and a semiconductor with μ � 0. In addition
to the infinitely extended continuum states [35], bound states,
characterized by their spatial decay away from the interface,
may occur. For the quasiparticle wave functions ra and sb in
our ansatz, this implies

p0
μ =

{
Aa(ra)μ μ < 0 with |ra| > 1 in Mott,

Bb(sb)μ μ � 0 with |sb| < 1 in semi,
(16)

where the indices a, b stand for the + or − sign in Eq. (8).
Outside their respective bands, both κMott and κsemi are purely
imaginary, such that the holon wave function p0

μ decays away
from the interface to both sites. The bound state energy finally
decides if the physically sound solution is comprised of the +
or − sign solution.

While we keep the model parameters Tμν, Uμ, and Vμ con-
stant inside their respective regions, our analysis shows that an
additional on-site perturbation �V �= 0 at the semiconductor
interface site μ = 0 is a prerequisite for obtaining interface
states. This interface perturbation arises due to local modi-
fications in the epitaxial interfaces of different materials. It
might be introduced by a structural relaxation or deformation
[64,70,71], by the tilting of the perovskite octahedra as in
LaTiO3/KTaO3 [15], or other local modifications [72,73].

By considering the relation between doublons p1
μ and

holons p0
μ in the Mott and semiconductor regions, we can

establish boundary conditions at the interface using Eq. (4).
These relate the amplitudes with the interface perturbation.
After some algebra (see Appendix C for details), the defining
equation for bound states at the single unpolarized interface
reads

1

ra
− 1

sb
= �V Z

T
. (17)
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FIG. 1. Density of states D(E ) of the Mott insulator (blue dashed
line) and the semiconductor (red solid line) together with the delta
peaks of the bound states shown as the black dashed vertical lines.

It is important to note that this condition lacks a solution
in the absence of an interface perturbation (see Appendix
C 1). Without it, the interface only supports interface reso-
nances, decaying to one site while being a plane wave in
the other half space. Figure 1 shows the density of states
of this system as the bands of the Mott and semiconduc-
tor together with the deltalike bound state energies. It looks
similar to the Newns-Anderson model describing chemisorp-
tion or localized magnetic states in metals [74,75]. Figure 2
shows one solution to this equation. As expected for a bound
state, the probability distribution exhibits localization at the
interface—on the lattice site with the interface perturbation—
and displays distinct decay constants towards both the Mott
insulator and the semiconductor regions.

We find bound state solutions for attractive and repulsive
interface perturbations. This is a distinction from the usual
quantum mechanics case with a delta potential, in which only
the attractive case has bound state solutions.
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FIG. 2. Bound state for the holon wave functionp0
μ and quasipar-

ticle probability distribution |p0
μ|2 at the interface for the unpolarized

background with E = 1.16U . The parameters are V = 1.1U , T =
0.4U , and �V = 0.2U .
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A. Minimal interface perturbation

From an experimental standpoint, the selection of materials
for the Mott insulator and the semiconductor will determine
the interface perturbation �V and the hopping strength T ,
as well as the band offset V . Consequently, it is crucial to
comprehend the requisite strength of the interface perturbation
to establish a bound state. Without this, the interface only
supports interface resonances or, in case the bands overlap
energetically, quasiparticle wave functions covering both half
spaces. Interestingly, such a state is discovered to exist irre-
spective of whether �V is attractive or repulsive, provided
it surpasses a specific threshold. While experimentally the
choice of materials fixes the parameters, in our theoretical
study it is instructive to tune the band offset V . As bound states
have an energy outside of the Mott and semiconducting band,
the respective band edges serve as a natural boundary for the
allowed energies. For this, we need to distinguish between an
attractive and repulsive perturbation.

In the �V > 0 case, bound states are comprised of ra =
r+ and sb = s−. To satisfy the condition |sb| = |s−| < 1 any
valid solution requires an energy E > B = 2T/Z − T ‖

k + V ,
ensuring that it lies energetically above the semiconducting
band. To fulfill |r+| > 1, the upper band edges of the lower
AL and of the upper AH Hubbard band are relevant:

AL = 1

2

[
−
√(

T H
k

)2 + U 2 + T H
k + 2U

]
,

AH = 1

2

[√(
T H

k

)2 + U 2 + T H
k + 2U

]
, (18)

where T H
k = 2T

Z − T ‖
k .

Depending on the model parameters V and U , four sce-
narios of band alignment arise. First, the semiconducting
band edge might be energetically higher than the Mott bands
B > AH or, equivalently, V > U for k‖ = 0. In this case, the
threshold for the existence of bound states is given by Eq. (17)
at E = B:

�Vmin,B = T

Z

(
1

r+(E = B)
− 1

s−(E = B)

)
. (19)

In the limit V � U this approaches �Vmin,B → T
Z . In this

case, the required interface perturbation is small, �V � U .
Second, for a semiconducting band edge situated between

the center of the Mott gap and the upper Hubbard band
U/2 < B < AH , the ansatz implies E > AH . This is the case
in Ref. [53]. Consequently, Eq. (17) at E = AH yields

�Vmin,AH = T

Z

(
1

r+(E = AH )
− 1

s−(E = AH )

)
. (20)

For strong Coulomb interaction compared to the hopping, this
simplifies to �Vmin,AH = 1

2 T ‖
k + U − V + O(T 2).

Third, if the semiconducting band edge is between the
lower Hubbard band and the middle of the Mott band gap
AL < B < U/2, any bound state has B < E < U/2. The
threshold is found as �Vmin,B. This is the case in Ref. [68].

Fourth, the semiconducting band edge might be energeti-
cally lower than the Hubbard bands B < AL, which requires
AL < E and AL < E < U/2 for bound states. Thus Eq. (17)
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FIG. 3. Minimally needed interface perturbation �Vmin in the
positive (solid line) and negative (dashed line) case as a function
of the on-site potential offset V . The hopping strength T = 0.4U is
fixed. The annotations give the approximate formula in the �V > 0
case. The vertical lines give the band offsets for SrTiO3 interface with
SmTiO3 and LaVO3, respectively.

at E = AL gives

�Vmin,AL = T

Z

(
1

r+(E = AL )
− 1

s−(E = AL )

)
. (21)

To first order in the hopping, this reads �Vmin,AL = 1
2 T ‖

k −
V + O(T 2). For the full expressions in terms of the param-
eters V , U , T , and T ‖

k , see Appendix C 2.
The required strength of the interface perturbation �Vmin

depends on the band alignment. It is depicted in Fig. 3 (sold
line) as a function of this band alignment, parametrized by
the potential offsetV for given hopping T . The approximate
dependence of T , U , and V is given. It decreases linearly
with decreasing distance V from the lower Hubbard band
and is nearly constant in the lower half of the Mott gap; it
goes up at V = U/2 and decreases from there linearly, before
being constant again. For an existing interface, the parameter
combination is given by the materials such that this system
would be a single point on either the solid or dashed line (two
examples are marked). By a gate voltage applied to only one
half space, the band offset V may be shifted and the minimally
needed strength moves accordingly.

Similar considerations as above might also be done for
a negative interface perturbation �V < 0, corresponding to
ra = r− and sb = s+. In this case, any valid solution requires
an energy below the semiconducting band edge E < BL =
−2T/Z − T ‖

k + V , where both lower band edges in the Mott
region, ALL and ALH , are relevant. With T L

k = 2T/Z + T ‖
k they

read

ALL = − 1
2

[
T L

k − U +
√(

T L
k

)2 + U 2
]
,

ALH = − 1
2

[
T L

k − U −
√(

T L
k

)2 + U 2
]
. (22)

The minimum required interface perturbation can be calcu-
lated using the same approach as before and is shown in Fig. 3
(dashed line). The solutions for attractive and repulsive �V
seem to be related (at least approximately) via an inflection
point inside the Hubbard gap.
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FIG. 4. Decay constant κsemi in the unpolarized semiconducting
half space is shown as a function of the interface perturbation for
different band offsets V . The hopping strength is fixed at T = 0.2U .
Note the gap in the 0.2U data.

B. Decay constant

The decay on both sides, e−κ|μ|, is characterized by an
inverse length scale:

κMott = arcosh

(∣∣∣∣ Z

2T

[
E (U − E )

E − U/2
− T ‖

k

]∣∣∣∣),

κsemi = arcosh

(∣∣∣∣ Z

2T

[
V − E − T ‖

k

]∣∣∣∣). (23)

The decay constant for the semiconducting side is illustrated
in Fig. 4. Notably for small but realistic T , there exists a
range of interface perturbations without any solutions (e.g.,
for T = 0.2U , from �V/U ≈ 0.5–1) for a band offset close
to the lower Hubbard band V = 0.2U , which is close to the
measured ones for SrTiO3/SmTiO3 and SrTiO3/GdTiO3 [68].
Figure 5 illustrates the same information for the Mott side.
Again, for realistic hopping parameters there is a range of �V
values where no bound-state solution exists. In contrast to the
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FIG. 5. Decay constant κMott in the unpolarized Mott half space
is shown for different band offsets V as a function of the interface
perturbation �V . The hopping strength is fixed at T = 0.2U .
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FIG. 6. Decay constants κMott, κsemi for both sides with V =
0.2U (red line) and V = 1.5U (blue dashed line) with T = 0.2U in
the unpolarized case. Note the gap in the red square and diamond
curves.

semiconducting side, the decay constant in the Mott insulator
may display nonmonotonic behavior: when the band offset V
is close to the lower Hubbard band, a discontinuity occurs
where κMott sharply rises to a large value before abruptly
decreasing close to zero. Increasing the interface perturbation
for such a semiconducting band causes the energy of the
solution to transition from being between the Hubbard bands
to residing above the upper band, resulting in the observed
discontinuity.

The rate of decay, whether it occurs more rapidly in the
Mott or the semiconducting side, depends on both the band
offset and the hopping strength. Figure 6 displays both decay
constants for a band offset close to the lower Hubbard band
and another above the upper one, both for a small but realistic
hopping strength. In the case of the larger on-site potential,
the decay constant in the Mott is greater than in the semicon-
ductor, indicating faster decay in the Mott. However, for the
smaller on-site potential near the lower Hubbard band, there
is a reversal as the interface perturbation increases. For small
interface perturbations, the decay is faster in the Mott but,
as the interface perturbation reaches a certain magnitude, the
decay becomes slower than in the semiconductor.

In the case of a negative interface perturbation, essentially
all the characteristics observed for positive interface perturba-
tions reappear; see Fig. 7.

Experimental measurements at the LaTiO3/SrTiO3 system
show a tunneling strength of T = 0.3 eV with a Coulomb
repulsion of U = 6–20T , such that realistic values are in the
T = 0.16–0.05U regime. This matches the value used here
of T = 0.2U . The decay constant for these parameters yields
bound states with a nonzero quasiparticle density extending a
few layers around the interface, consistent with other works
[10,11]. The bound states found here have dispersion in the
parallel direction. It is likely that all these subbands are par-
tially filled leading to a metallic state parallel to the interface
as it was measured in [1,15,32].
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FIG. 7. Decay constants κMott, κsemi for a negative interface per-
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different on-site potentials V . Hopping strength T = 0.2U .

IV. UNPOLARIZED MOTT REGION BETWEEN TWO
SEMICONDUCTORS

Utilizing the same methodology, we can also compute
bound states for the quasiparticle wave functions in a system
with two interfaces, where an unpolarized Mott insulator is
positioned between two semi-infinite semiconductors, similar
to a quantum well. Notably, there is no prerequisite for the
semiconductors to be identical; they can have distinct band
offsets V and interface perturbations �V . The Mott region
now spans the site indices −a � μ � a, leading to the fol-
lowing ansatz:

p0
n =

⎧⎪⎨⎪⎩
Asμ

1 μ < −a,

Brμ
+ + Crμ

− −a � μ � a,

Dsμ
2 a < μ.

(24)

Here, |s1| > 1 and |s2| < 1, with no requirement on the ab-
solute value in the Mott region. Remember that the si give
the electron wave function eigenmodes in the semiconductor
while the ri give the quasiparticle eigenmodes in the Mott
insulator. The four boundary conditions now yield two con-
ditions relating the amplitudes:

1 = 2(E − U )

2E − U

sa+1
1

A
(Br−a−1

+ + Cra+1
+ ),

1 = 2(E − U )

2E − U

s−a−1
2

D
(Bra+1

+ + Cr−a−1
+ ). (25)

Additionally, there are two defining equations for the interface
perturbations at the interfaces:

�V1Z

T
=
[

2(E − U )

2E − U

Br−a
+ + Cra

+
A

− s−a
1

]
sa+1

1 ,

�V2Z

T
=
[

2(E − U )

2E − U

Bra
+ + Cr−a

+
D

− sa
2

]
s−a−1

2 . (26)

In the symmetric case, where the left and right semiconductors
are the same, s2 = s1̄ holds to satisfy the condition of absolute
values (with the bar denoting the opposite index). This ensures
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FIG. 8. Defining Eq. (27) with �V = −0.6U , T = 0.4U , and
V = 1.5U in the zero parallel momentum sector and a = 6. The
crossings of the solid and dashed line with the dotted one give the
energies for the even and odd parity solutions, respectively.

that the bound state does decay inside both semiconducting
half spaces.

Now, there exist even (+) solutions (with B = C, A = D)
and odd (−) solutions (with B = −C, A = −D). With this,
the boundary conditions for the coefficients and the defining
equation for bound states in this system are given by

1 = 2(E − U )

2E − U

B

A
(r−a−1

+ ± ra+1
+ )sa+1

1 , (27)

�V Z

T
+ s1 = ra

+ ± r−a
+

ra+1
+ ± r−a−1

+
. (28)

Here, + denotes the even parity case, while − indicates the
odd one. The energy of the bound state physically fixes the
mathematical ansatz for the si. s1 = s+ yields energies greater
than the semiconducting band, while s− yields those below.
The second equation is the defining one for quasiparticle
bound states in this double interface system; the first one
normalizes the wave function amplitudes.

A. Standing wave solutions

Disregarding any interface perturbation, the bound state
energy must fall into one of the two Mott bands (see Fig. 8).
Defining the Mott region as μ ∈ [−a, a], i.e., with 2a + 1
Mott lattice sites, there are even and odd parity solutions
for the quasiparticle wave function. This is well known from
the standard quantum well. Mathematically, we obtain 2a + 2
even-parity solutions for the wave function, which are evenly
distributed into a + 1 solutions in both the lower and upper
Hubbard bands. For odd parity, there are 2a solutions, equally
divided into a solutions in the lower and upper Hubbard
bands. All of them have quasiparticle density leaking from
the Mott into the semiconductors. (See Fig. 9.)

The physical condition of the wave function decay away
from the interfaces as well as the band offset V set the math-
ematical ansatz for s1. A change in the offset has a minimal
impact on the solutions, slightly lowering the energy (anal-
ogous to a potential well), as well as on the leaking. For
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FIG. 9. Bound states in the lower and upper Hubbard band with
�V = 0, T = 0.4U , and V = 1.5U in the zero parallel momentum
sector and a = 6.

solutions in the lower Hubbard band, the leakage is nearly
independent of the band offset.

The doublon and holon wave functions manifest as stand-
ing waves with |e±iκMottμ| = 1 in the Mott region. As known
from the quantum well, even and odd parity solutions alter-
nate in energy. Hence, in both the lower and upper Hubbard
bands, the standing waves have energies EL

0 , EL
1 , . . . , EL

2a, and
EU

0 , EU
1 , . . . EU

2a, respectively, where even (odd) index ener-
gies correspond to even (odd) parity solutions. Additionally,
and again analogous to the quantum well, the number of nodes
of the holon wave function p0

μ increases with energy from 0
to 2a.

More precisely, the corresponding quasiparticle probability
distributions |p0

μ(En)|2 have 2( a
2 − | a

2 − n
2 |) nodes for n even.

For a = 6, this results in the sequence 0 − 2 − 4 − 6 − 4 −
2 − 0. Performing the same analysis for the odd index energy
solutions yields 2( a

2 − | a
2 − n

2 |) + 1 nodes (1 − 3 − 5 − 5 −
3 − 1 for a = 6). In the lower Hubbard band the quasiparticle
probability distribution is the same between states with the
same number of nodes independent of their energy. In the
upper Hubbard band, this is not true anymore. As the energy
of the solution increases, more of the probability becomes lo-
calized at the interfaces; thereby the amount of leaked density
increases as well.

Bound state solutions persist within this heterostructure for
all V , independent of the band offset. As in the single-interface
case, the bound states display a dispersion in the parallel
direction, leading to subbands. These subbands are partially
filled and, as there is quasiparticle weight at the interface, the
bound states exhibit metallic behavior there [1,15,32].

B. With interface perturbation

Introducing an interface perturbation results in one (or in
special cases two) additional bound state(s) with eiκMottμ �= 1.
In the Mott region these are not standing waves, but the
wave function amplitude decays away from the interface; see
Fig. 10. The interface perturbation must exceed a minimum
value for these additional bound states to exist, which is
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FIG. 10. Additional bound state solutions for different interface
perturbations �V = −0.25U and −0.35U . The latter one has two
bound states, as the lowest standing wave solutions are pushed out of
the band. T = 0.4U and V = 1.5U in the zero parallel momentum
sector and a = 6.

given by

�Vmin = T

Z

(
−1 + cos[aκMott (ESL )]

cos[(a + 1)κMott (ESL )]

)
, (29)

with ESL = ±2T/Z − T ‖
k + V . The ± moves the bound state

below (−) or above (+) the semiconducting band. These ad-
ditional bound states are illustrated in Fig. 10.

We note that two (rather than one) extra states emerge
directly below and above one of the Hubbard bands if the band
offsetV and the perturbation�V align favorably. The lower
state originates from the lowest solution initially inside the
band being pushed outward.

The increase in the magnitude of the interface perturbation
enhances localization at the interface, resulting in an increased
decay constant in the semiconductors. The standing wave
solutions within the Mott bands exhibit only mild sensitivity
to the interface perturbation.

C. Nonsymmetric case

The band offset of the semiconductors coupled to the Mott
insulator do not necessarily need to be the same. In the case
of asymmetry, where V1 �= V2 and �V1 �= �V2, three out of
the four Eq. (25) and Eq. (26) govern the amplitudes A, B, C,
and D, with one serving as the normalization constant. The
remaining equation becomes the determining equation for the
energy of the bound state solutions. These solutions are also
asymmetric. In the absence of an interface perturbation, the
half space with the lower band offset accumulates slightly
more quasiparticle probability.

V. SINGLE INTERFACE AT MOTT-NÉEL BACKGROUND

As discussed in Secs. II D and II E, one may consider
two mean-field background solutions in the Mott insulator.
Previously we discussed the unpolarized Mott state without
any spin ordering whereby the doublons and holons may
simultaneously live on the same lattice site. This is in con-
trast to the bipartite Mott-Néel state where the doublon and
holon wave functions are exclusively nonzero on one of the
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sublattices, but remain coupled across lattice sites. In the
setting chosen here, the holon wave function only lives on
sublattice A (p0A

μ �= 0 in Mott), while the doublon one lives
on sublattice B (p1B

μ �= 0 in Mott). In this antiferromagnetic
Mott-Néel background, the interface bound states generally
comprise both the even and odd solution. Choosing μ � 0 as
the semiconducting and μ > 0 as the Mott insulating sites, the
ansatz for the quasiparticle wave function is

ψμ�0 =

⎡⎢⎢⎢⎢⎣
p0A

μ

p1A
μ

p0B
μ

p1B
μ

⎤⎥⎥⎥⎥⎦ = 1

2
Aλn

+

⎡⎢⎢⎣
1
0
1
0

⎤⎥⎥⎦+ 1

2
Bρn

−

⎡⎢⎢⎣
1
0

−1
0

⎤⎥⎥⎦ (30)

in the semiconducing sites. It is chosen to represent the con-
duction band. In the Mott insulating half space it reads

ψμ>0 = 1√
2
κn

i

⎡⎢⎢⎣
Ai

0
0
Bi

⎤⎥⎥⎦+ 1√
2
κn

j

⎡⎢⎢⎣
Aj

0
0
Bj

⎤⎥⎥⎦. (31)

Inserting this ansatz into the boundary conditions Eq. (C14)
yields

− Z

T
�V

1

2
(A − B) + Aλ+ + Bρ− = 1√

2
Biκi + 1√

2
Bjκ j,

A − B = 1√
2

Bi + 1√
2

Bj,

− Z

T
�V

1

2
(A + B) + Aλ+ − Bρ− = 1√

2
Aiκi + 1√

2
Ajκ j,

A + B = 1√
2

Ai + 1√
2

Aj . (32)

These equations relate the interface perturbation �V to the
amplitudes A and B. As in the unpolarized case, there is a
minimally needed strength of the additional interface pertur-
bation for a bound state to exist, but, in contrast, this threshold
is constant at �Vmin ≈ 2T

Z . Another distinct feature is that, for
bound states with an energy below the semiconducting band,
only a positive interface perturbation �V > 0 supports bound
states. Even though the charge background with one electron
per site is the same, the different spin backgrounds lead to
distinctive behavior of the bound states.

VI. CONCLUSIONS

Utilizing the hierarchy of correlations alongside the Fermi-
Hubbard model we derived equations for the existence of
bound states of the doublon and holon wave function at
single and multiple interface systems with different spin back-
grounds. We account for an additional interface perturbation.
These quasiparticle bound states manifest in the semicon-
ductor as real electrons, while in the Mott insulator they are
doublons and holons. Even though we used a model Hamil-
tonian, realistic values for the on-site potential, the hopping
strength, and the Coulomb repulsion can be extracted from
literature.

At a solitary interface, the spin background and the charge
backgrounds cannot be discussed independently: both in the

unpolarized case with (on average) one electron per site and
in the antiferromagnetic Mott-Néel background an interface
perturbation is needed to support bound states. The threshold
of the perturbation strength depends on the spin background;
in the unpolarized case it additionally depends on the band
alignment, whereas in the Mott-Néel case it is constant.

In the case of a double-interface system, bound states
exist even without an interface perturbation and manifest as
standing wave solutions. The introduction of the interface
perturbation adds additional states that are highly localized at
the interface.

For future investigations, exploring second-order effects
would be valuable. In the next hierarchical order of correla-
tions, spin-spin and doublon-holon correlations emerge. They
effectively renormalize the quasiparticle energies used here,
but they also potentially might have their own bound state
structure. Additionally, studying the backreaction of corre-
lation functions on the mean-field background could unveil
insights, including potential space charge layer formation and
effects of electron-density variation by spreading across the
interface.
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APPENDIX A: HIERARCHY OF CORRELATIONS

In order to describe the (quasi)particles in the heterostruc-
ture, we resort to the hierarchy of correlations [33,34,39]. For
any lattice Hamiltonian of the form

Ĥ = 1

Z

∑
μν

Ĥμν +
∑

μ

Ĥμ, (A1)

we can find an infinite set of equations for the density operator
ρ̂. In this, μ and ν are generalized coordinates. In the regime
of large coordination number Z � 1 a truncation scheme is
applicable to give a closed set of equations and an iterative
way to solve this.

The starting point is the Heisenberg equation:

i∂t ρ̂ = [H, ρ̂] = 1

Z

∑
μν

L̂μνρ̂ +
∑

μ

L̂μρ̂, (A2)

with the Liouville superoperators L̂μν = [Ĥμν, ρ̂] and L̂μ =
Ĥμρ̂. The next step is the decomposition of the density
operator. Any operator whose expectation value one might
be interested in is computed from a subset of lattice sites.
This allows for the decomposition into on-site and correlated
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parts:

ρ̂μν = ρ̂corr
μν + ρ̂μρ̂ν,

ρ̂μνλ = ρ̂corr
μνλ + ρ̂corr

μν ρ̂λ + ρ̂corr
μλ ρ̂ν + ρ̂corr

νλ ρ̂μ + ρ̂μρ̂ν ρ̂λ, (A3)

and so on. In order to get the time evolution of these, we need
to calculate

i∂t ρ̂μ = 1

Z

∑
α �=μ

trα

(
L̂S

αμ

[
ρ̂corr

μα + ρ̂αρ̂μ

])+ L̂μρ̂μ, (A4)

with the symmetrized from L̂S
μν = L̂μν + L̂νμ for the on-site

density operator. This time evolution contains the two-point
correlator ρ̂corr

μν . The same is done for the two-site density
operator, such that we can combine these two results to find

i∂t ρ̂
corr
μν = L̂μρ̂corr

μν + 1

Z
L̂μν

(
ρ̂corr

μν + ρ̂μρ̂ν

)
− ρ̂μ

Z
trμ

(
L̂S

μν

[
ρ̂corr

μν + ρ̂μρ̂ν

])
+ 1

Z

∑
α �=μν

trα

(
L̂S

μα

[
ρ̂corr

μνα + ρ̂corr
μν ρ̂α + ρ̂corr

να ρ̂μ

])
+ (μ ↔ ν) (A5)

as the time evolution of the two-point correlator ρ̂corr
μν . It con-

tains the three-point correlator ρ̂corr
μνλ. This builds up a set of

equations:

i∂t ρ̂μ = F1
(
ρ̂μ, ρ̂corr

μν

)
,

i∂t ρ̂
corr
μν = F2

(
ρ̂μ, ρ̂corr

μν , ρ̂corr
μνλ

)
,

i∂t ρ̂
corr
μνλ = F3

(
ρ̂μ, ρ̂corr

μν , ρ̂corr
μνλ, ρ̂

corr
μνλκ

)
,

i∂t ρ̂
corr
μνλα = F4

(
ρ̂μ, ρ̂corr

μν , ρ̂corr
μνλ, ρ̂

corr
μνλκ , ρ̂

corr
μνλκβ

)
. (A6)

The specific form of the functionals Fn is dictated by the
Hamiltonian.

If the initial state satisfies scaling relations such that �-point
correlations are of order O(Z−�+1), this scaling persists for all
times [39,50]. Exploiting the scaling behavior, we approxi-
mate the equations to zeroth and first order, yielding

i∂t ρ̂μ ≈ F1(ρ̂μ, 0), with solution ρ̂0
μ,

i∂t ρ̂
corr
μν ≈ F2(ρ̂0

μ, ρ̂corr
μν , 0). (A7)

These two equations are used to describe the charge modes
within the studied system. ρ̂0

μ encodes the mean-field back-
ground charge and spin structure.

APPENDIX B: HIERARCHY FOR THE FERMI-HUBBARD
MODEL

In order to apply the hierarchy of correlations to the Fermi-
Hubbard model Eq. (1), we first introduce the two different
spin backgrounds. There is the unpolarized state

ρ̂0
μ = |↑〉μ〈↑| + |↓〉μ〈↓|

2
(B1)

and there is the antiferromagnetic Mott-Néel state with its two
sublattices A and B arranged in a checkerboard structure:

ρ̂0
μ =

{
|↑〉μ〈↑| μ ∈ A,

|↓〉μ〈↓| μ ∈ B.
(B2)

Independent of the mean-field background, it is instructive
to introduce quasiparticle operators, similar to the idea of
Hubbard X [40,41] or composite operators [42], as

ĉμsI = ĉμsn̂
I
μs̄ =

{
ĉμs(1 − n̂μs̄) for I = 0,

ĉμsn̂μs̄ for I = 1
(B3)

for doublons I = 1 and holes I = 0. These better describe the
physics, but note that these operators are approximately, but
not exactly, equal to the quasiparticle creation and annihilation
operators for holons and doublons; see, e.g., Ref. [76]. The
label s̄ denoted the spin index opposite to s. For the correlation
functions 〈ĉμsI ĉνsJ〉 we find

i∂t 〈ĉ†
μsI ĉνsJ〉corr = 1

Z

∑
λL

Tμλ

〈
n̂I

μs̄

〉0〈ĉ†
λsLĉνsJ〉corr

− 1

Z

∑
λL

Tνλ

〈
n̂J

ν s̄

〉0〈ĉ†
μsI ĉλsL〉corr

+ (U J
ν − U I

μ + Vν − Vμ

)〈ĉ†
μsI ĉνsJ〉corr

+ Tμν

Z

(〈
n̂I

μs̄

〉0〈
n̂1

νsn̂
J
ν s̄

〉0 − 〈n̂J
ν s̄

〉0〈
n̂1

μsn̂
I
μs̄

〉0)
+ O(1/Z2). (B4)

Here, we used the abbreviation U I
μ = IUμ, i.e., U I

μ = Uμ for
I = 1 and U I

μ = 0 for I = 0.
The relevant part of this time evolution, which describes

the dynamics, can further be simplified by a factorization
[39,43]. This yields the doublon (I, J = 1) and holon (I, J =
0) amplitudes:

〈ĉμsI ĉνsJ〉corr = (pI
μ

)∗
pJ

ν . (B5)

The two amplitudes can be grouped together using a spinor
notation and governing equations for these (quasi) particles
[35] can be derived. Assuming a highly symmetric lattice such
as a hypercubic one allows us to perform the corresponding
Fourier transform parallel to the interface by

pμsI = 1√
N‖

∑
k‖

pI
n,k‖,se

ik‖·x‖
μ,

Tμν = Z

N‖
∑

k‖
Tm,n,k‖eik‖·(x‖

μ−x‖
ν ). (B6)

For the isotropic nearest neighbor hopping T ‖
n = T ⊥

n,n−1 = T
the components read

Tm,n,k‖ = T ‖
k‖

Z
δm,n + T

Z
(δn,n−1 + δn,n+1),

T ‖
k‖ = 2T

∑
xi

cos
(
p‖

xi

) ≡ ZT ‖
k , (B7)
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with the hopping contribution T ‖
k . With this, the doublon and

holon amplitudes follow the coupled equations:(
E − U I

μ − Vμ

)
pI

μ + 〈n̂I
μ

〉0∑
J

T ‖
k pJ

μ

= −T

〈
n̂I

μ

〉0
Z

∑
J

(
pJ

μ−1 + pJ
μ+1

)
. (B8)

The different possibilities of the mean-field background con-
tribute by the expectation values 〈n̂I

μ〉0 = Tr(n̂I
μρ̂0

μ). In the
unpolarized state we have 〈n̂I

μ〉0 = 1/2, while in the antifer-
romagnetic Mott-Néel state we need another index for the A
and B sublattice as one of these has 〈n̂μX ↑〉 = 0 and 〈n̂μX ↓〉 =
1, while the other one has them reversed: 〈n̂μY ↑〉 = 1 and
〈n̂μY ↓〉 = 0.

APPENDIX C: SINGLE UNPOLARIZED INTERFACE

At the single interface between the Mott insulator μ < 0
and the semiconductor μ � 0 we can write down two bound-
ary conditions from Eq. (B8) with 〈n̂I

μ<0〉0 = 1/2, 〈n̂1
μ�0〉0 =

0, and 〈n̂0
μ�0〉0 = 1. Together with the relation between par-

ticles and holes p0
μ<0E = p1

μ<0(E − U ) in the Mott, the
boundary conditions read

(E − V − �V + T ‖
k )p0

0 = −T

Z

(
p0

1 + 2E − U

2(E − U )
p0

−1

)
,(

E + 2E − U

2(E − U )
T ‖

k

)
p0

−1 = −T

Z

(
p0

0 + 2E − U

2(E − U )
p0

−2

)
.

(C1)

Additionally, two identities hold within each individual
region:

E + T ‖
k

2E − U

2(E − U )
= −T

Z

(
ra + 1

ra

)
2E − U

2(E − U )
,

(E − V + T ‖
k ) = −T

Z

(
sb + 1

sb

)
. (C2)

By combining the ansatz Eq. (16), the boundary conditions
Eq. (C1), and using the identities Eq. (C2), we derive a rela-
tion between the amplitudes:

2E − U

2(E − U )

Aa

Bb
= 1. (C3)

Furthermore, we obtain an equation relating the interface per-
turbation to the amplitudes and half-space solutions ra and sb:

�V Z

T
= 2E − U

2(E − U )

Aa

Bb

1

ra
− 1

sb
. (C4)

These two equations combine to the defining equation for
bound states at the unpolarized single interface Eq. (17).

1. Defining equation

The defining equation from these two then reads

0 = 1

ra
− 1

sb
− �V Z

T
. (C5)

0.5 0.75 1 1.25 1.5
−2

0

2

4

6

8

10

E/U

f
(E

)

R0 I

R1 |r+|
|s−|

FIG. 11. Equation (C6) with ra = r+ and sb = s−. The solid
line gives the real part without any interface perturbation R0 =
Re f (E , �V = 0), the dashed line the imaginary part I = Im f (E ),
and the dotted line the real part with nonzero interface perturba-
tion R1 = Re f (E , �V = 0.2U ). The parameters are V = 1.1U and
T = 0.4U .

Without an interface perturbation, �V ≡ 0, this equation is
solved by bκsemi = aκMott + 2πc with an integer c ∈ Z. But,
this would also result in |eaiκMott | = |ebiκsemi |, which is in con-
flict with the ansatz Eq. (16). So, there are no solutions
without the interface perturbation. Inserting ra and sb yields
a function

f (E ) = 1

ra
− 1

sb
− �V Z

T

= ai

√
1 − Z2

(
2E
(

E
U−2E + 1

)+ T ‖
k

)2
4T 2

+ bi

√
1 − Z2(E + T ‖

k − V )2

4T 2

+ Z[E (U − 2V ) + UV ]

4ET − 2TU
− �V Z

T
(C6)

whose zeros give the bound states. a and b are the + or −, re-
spectively. The imaginary “bells” coincide with the Mott and
semiconductor band, respectively, and are not affected by the
interface perturbation. The term −�V Z/T shifts the real part
of the defining equation up and down. In Fig. 11 the defining
equation for ra = r+ and sb = s− is shown without and with
an interface perturbation together with the absolute value |ra|
and |sb|. Without any interface perturbation the zeros of the
real part are inside the nonzero imaginary part. So, by adding
the interface perturbation it follows directly that any solution
is outside of the bands and has imaginary κMott and κsemi. The
conditions |ra| > 1 and |sb| < 1 then dictate on which side
of the “bells” the solution needs to be, because the absolute
value (at least for the semiconductor) is a monotone function
of energy E interrupted by the plateau of the band. For the
Mott, this is also true, but at E = U/2 there the absolute value
goes down to zero again.
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2. Minimum interface perturbation

The minimum required interface perturbation to shift the
real part depends on the band alignment of the semiconduct-
ing band relative to the Hubbard bands. Mathematically, it
depends on the on-site potential V as this shifts the band
edge. Now, one needs to distinguish four different cases: the
semiconductor band edge is (i) above the upper Hubbard band,
(ii) between the band gap center U/2 and the upper Hubbard
band, (iii) above the lower Hubbard band but below the band
gap center, and (iv) below the lower Hubbard band. In the first
case, the minimum interface perturbation reads

4�Vmin,B = U 2Z

4T − Z (2T ‖
k + U − 2V )

+ U − 2V

−
4iT

√
1 − (α+β )2

4T 2[Z (2T ‖
k +U−2V )−4T ]2

Z
, (C7)

with the abbreviations

α = 8T 2 − 4T Z (T ‖
k + U − 2V ),

β = Z2(−2V (T ‖
k + U ) + T ‖

k U + 2V 2). (C8)

In the second case, we find

4Z�Vmin,AH =
√

4T 2 − 4T T ‖
k Z + Z2((T ‖

k )2 + U 2)

−4iT

√
1 − (α + 2T + Z (T ‖

k + U − 2V ))2

16T 2

−2T + Z (T ‖
k + U − 2V ), (C9)

with the abbreviation

α =
√

(2T − ZT ‖
k )2 + Z2U 2 (C10)

as the minimum interface perturbation. In the third case, we
get �Vmin,B again. In the fourth case we find

4Z�Vmin,AH = −
√

4T 2 − 4T T ‖
k Z + (T ‖

k )2Z2 + U 2Z2

− 4iT

√
1 − (−α + 2T + Z (T ‖

k + U − 2V ))2

16T 2

− 2T + T ‖
k Z + UZ − 2V Z, (C11)

with

α =
√

(2T − ZT ‖
k )2 + Z2U 2. (C12)

3. Single interface at Mott-Néel background

Without losing any generality, we use the mean-field state
Eq. (9). This fixes the occupation number expectation val-
ues to 〈n̂μA↑〉 = 1, 〈n̂μB↑〉 = 0. Combining Eq. (B8) with the
ansatz Eq. (30) and Eq. (31) yields four boundary conditions:

(E − V − �V )p0A
0 = −

[
T ‖

k p0B
0 + T

2Z
p1B

1 + T

Z
p0B

−1

]
,

E p0A
1 = −

[
T ‖

k p1B
1 + T

Z
p1B

2 + 2T

Z
p0B

0

]
,

(E − V − �V )p0B
0 = −

[
T ‖

k p0A
0 + T

2Z
p0A

1 + T

Z
p0A

−1

]
,

(E − U )p1B
1 = −

[
T ‖

k p0A
1 + T

Z
p0A

2 + 2T

Z
p0A

0

]
. (C13)

By using Eq. (10) within the single regions these might be
simplified to

− Z

T
�V p0AS

0 + 2p0BS
1 = p1BM

1 ,

2p0BS
0 = p1BM

0 ,

− Z

T
�V p0BS

0 + 2p0AS
1 = p0AM

1 ,

2p0AS
0 = p0AM

0 . (C14)

The additional index M or S marks the Mott and semiconduct-
ing spinor, respectively.
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